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Abstract

Reflectance data in the green, red and near-infrared wavelength region were acquired by the SPOT high resolution visible and geometric
imaging instruments for an agricultural area in Denmark (56°N, 9°E) for the purpose of estimating leaf chlorophyll content (Cab) and green leaf
area index (LAI). SPOT reflectance observations were atmospherically corrected using aerosol data from MODIS and profiles of air temperature,
humidity and ozone from the Atmospheric Infrared Sounder (AIRS), and used as input for the inversion of a canopy reflectance model.
Computationally efficient inversion schemes were developed for the retrieval of soil and land cover-specific parameters which were used to build
multiple species and site dependent formulations relating the two biophysical properties of interest to vegetation indices or single spectral band
reflectances. Subsequently, the family of model generated relationships, each a function of soil background and canopy characteristics, was
employed for a fast pixel-wise mapping of Cab and LAI.

The biophysical parameter retrieval scheme is completely automated and image-based and solves for the soil background reflectance signal,
leaf mesophyll structure, specific dry matter content, Markov clumping characteristics, Cab and LAI without utilizing calibration measurements.

Despite the high vulnerability of near-infrared reflectances (ρnir) to variations in background properties, an efficient correction for background
influences and a strong sensitivity of ρnir to LAI, caused LAI–ρnir relationships to be very useful and preferable over LAI–NDVI relationships for
LAI prediction when LAIN2. Reflectances in the green waveband (ρgreen) were chosen for producing maps of Cab.

The application of LAI–NDVI, LAI–ρnir and Cab–ρgreen relationships provided reliable quantitative estimates of Cab and LAI for agricultural
crops characterized by contrasting architectures and leaf biochemical constituents with overall root mean square deviations between estimates and
in-situ measurements of 0.74 for LAI and 5.0 μg cm−2 for Cab.

The results of this study illustrate the non-uniqueness of spectral reflectance relationships and the potential of physically-based inverse and
forward canopy reflectance modeling techniques for a reasonably fast and accurate retrieval of key biophysical parameters at regional scales.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate quantitative estimates of leaf biochemical and
canopy biophysical variables are important for land surface
models quantifying the exchange of energy and matter between
the land surface and the lower atmosphere. Key variables
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include the leaf area index (LAI), here defined as the single
sided area of green, functioning leaves per unit ground, that
exhibits a major control on transpiration and uptake of CO2 by
the canopy, and leaf chlorophyll content (Cab) that can assist in
determining photosynthetic capacity and productivity (e.g.
Boegh et al., 2002; Nijs et al., 1995).

Remotely sensed data in the reflective optical domain
function as a unique cost-effective source for a detailed know-
ledge of the spatial and temporal variations of these key canopy
characteristics. The shape and form of canopy reflectance
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spectra depends on many factors such as vegetation structure,
leaf biochemical composition, soil background, and the view
and illumination geometry. For instance, LAI has a large impact
on reflectance spectra especially in the near-infrared (NIR)
while the visible part of the spectrum is strongly affected by leaf
chlorophyll.

Remote sensing techniques to estimate vegetation char-
acteristics from reflective optical measurements have either
been based on the empirical–statistical approach that relates
surface measurements of canopy variables to single spectral
reflectances or vegetation indices (VI), or on the inversion of
a physically based canopy reflectance (CR) model. Both
approaches have their advantages and disadvantages. The
potential of VIs for the determination of crop parameters
have been demonstrated in numerous studies (e.g. Broge &
Leblanc, 2001; Colombo et al., 2003; Gitelson et al., 2005;
Tucker, 1980) and the simplicity and computational efficien-
cy of the approach makes it highly desirable for large-scale
remote sensing applications. However, a fundamental prob-
lem with the VI approach for estimating biophysical variables
is its lack of generality. Since canopy reflectance depends on a
complex interaction of several internal and external factors
(Baret, 1991) that may vary significantly in time and space
and from one crop type to another, no universal relationship
between a single canopy variable and a spectral signature
can be expected to exist. Consequently, spectral reflectance
relationships will be site-, time-and crop-specific, making the
use of a single relationship for an entire region unfeasible
(Baret & Guyot, 1991: Colombo et al., 2003; Gobron et al.,
1997).

The physically-based models have proven to be a promising
alternative as they describe the transfer and interaction of
radiation inside the canopy based on physical laws and thus
provide an explicit connection between the biophysical
variables and the canopy reflectance. Different strategies have
been proposed for the inversion of these models including
numerical optimization methods (e.g. Jacquemoud et al., 1995,
2000), look-up table approaches (e.g. Combal et al., 2002;
Knyazikhin et al., 1998a,b; Weiss et al., 2000) and artificial
neural network methods (e.g. Bacour et al., 2006; Fang &
Liang, 2005; Walthall et al., 2004; Weiss & Baret, 1999). Look-
up table and neural network approaches require a training
database consisting of canopy reflectance spectra together with
the corresponding biophysical variables, and their perfor-
mances rely on the training database and the training process
itself. Ideally, these approaches should be learned on exper-
imental data which is not readily available for most places on
the globe. The iterative optimization approach facilitates a
direct retrieval of biophysical parameters from observed reflec-
tances without the prior use of calibration or training data of
any kind. However, this method suffers from its expensive
computational requirement (Jacquemoud et al., 2000) making
the retrieval of biophysical variables unfeasible for large
geographic areas. A limitation shared by all of the physically-
based models is the ill-posed nature of model inversion
(Atzberger, 2004; Combal et al., 2002); the fact that different
combinations of canopy parameters may correspond to almost
similar spectra. This makes the choice of the initial parameter
values important, and some regularization of the inverse
problem may be required implying the use of a priori know-
ledge or information on the spatial or temporal variability of
key canopy parameters to constrain the inversion process
(Atzberger, 2004; Combal et al., 2002; Houborg et al., 2007).

The crop-specific sensitivity of spectral reflectance relation-
ships to canopy geometry (e.g. leaf angle distribution and
clumping) and leaf properties (e.g. dry matter and mesophyll
structure) and the site-specific sensitivity to atmospheric and
background influences must be properly accounted for in order
to apply spectral reflectance relationships for the mapping of
LAI and Cab. In this study inverse and forward CR modeling
techniques were combined for a pixel-wise estimation of LAI
and Cab from a family of spectral reflectance relationships. The
relationships were derived separately for pre-classified land
cover classes due to the dependence on land cover-specific
parameters and were also made dependent on the soil
background reflectance signal. To make LAI and Cab estimates
independent of in-situ and calibration data, the crop and site-
specific parameters needed to build the appropriate spectral
reflectance relationships were retrieved from the inversion of a
CR model employing the iterative optimization approach. Since
the inversion of the CR model is computationally demanding
the inversions were performed using reflectance observations
averaged over several pixels. Additionally, pixel-wise inver-
sions for the retrieval of LAI and Cab were avoided making the
scheme applicable for regional-scale use.

While the use of VI rather than single spectral reflectance
relationships for estimating biophysical parameters tends to
reduce the sensitivity to internal and external factors such as
background and atmospheric influences, the translation of
spectral reflectance data into a VI may also reduce the sen-
sitivity to the parameter of interest. For instance, the widely
used Normalized Difference Vegetation Index (NDVI) that
combines reflectances in the near-infrared (NIR) and red
waveband approaches a saturation level at intermediate values
of LAI while NIR band reflectances remain sensitive to LAI in
densely vegetated areas (e.g. Huete et al., 2002; Knyazikhin
et al., 1998a). Several studies have demonstrated a maximum
sensitivity of reflectances in the green (540–560 nm) and red
edge (700–730 nm) spectrum to changing leaf chlorophyll
concentrations (e.g. Gitelson et al., 1996; Gitelson et al., 2005;
Houborg et al., 2007; Yoder & Pettigrew-Crosby, 1995).
However, VIs that combine leaf chlorophyll sensitive reflec-
tances and ρnir, which is highly responsive to changing leaf
biomass, are typically not correlated with leaf chlorophyll
content due to a high variability of ρnir relative to chlorophyll
sensitive reflectance data (Boegh et al., 2002). In this study, the
use of NIR band reflectances as predictors of LAI for
intermediate to high vegetation densities was investigated
while NDVI relationships were adopted for low vegetation
densities. The mapping of leaf chlorophyll rather than total
canopy chlorophyll was facilitated using relationships based on
reflectances from the green waveband.

In this particular study, the turbid medium Markov chain
CR model developed by Kuusk (1995, 2001) coupled to the
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PROSPECT leaf optics model (Baret & Fourty, 1997;
Jacquemoud & Baret, 1990) was adopted for the biophysical
parameter retrievals using input of SPOT reflectance observa-
tions. Accurate reflectance input data are a prerequisite for a
successful retrieval of biophysical parameters from physically
based CR models. Consequently, the feasibility of aerosol
data from MODIS and atmospheric profiles of air tempera-
ture, humidity and ozone from the Atmospheric Infrared
Sounder (AIRS) for the atmospheric correction of SPOT ra-
diances was explored. The estimates of LAI and Cab were
validated using field measurements from a number of agri-
cultural sites.

2. Field experiment

A field experiment was conducted from early May through
late September, 2005 in affinity to The Danish Institute of
Agricultural Sciences, which is located in an agricultural area
near Viborg in Denmark (9.423 E, 56.486 N). Denmark is
located in the zone of prevailing westerlies causing a temperate
and fairly humid environment. The precipitation total for the
study period was 313 mm and the warmest months were July
and August with daily mean temperatures of 17.5 °C and
16.1 °C, respectively (Denmark's Meteorological Institute,
2006). Field data of leaf chlorophyll and leaf area index were
collected on fields of barley, wheat and maize throughout the
experiment and spectral reflectance observations for a
60×60 km image swath were acquired in June, September
and October by SPOT satellite sensors.

2.1. Biophysical measurements

A portable SPAD-502 chlorophyll meter (Minolta, Spain)
was used for non-destructive measurements of leaf chloro-
phyll. However, in order to use the unit-less SPAD values for
validating satellite-based leaf chlorophyll estimates a rela-
tionship with leaf chlorophyll must be initially established.
For this purpose a total of 18 barley, wheat and maize leaf
samples were thoroughly measured with the SPAD-502 and
subsequently cut into 1–2 cm pieces and kept frozen until
measurement time. The chlorophyll (a+b) content was ex-
tracted using the common N,N-dimethylformamide solvent
method (e.g. Moran, 1992). Extinction coefficients published
by Porra et al. (1989) for chlorophyll pigments diluted in N,N-
dimethylformamide were used for calculating the concentra-
tions. All results are means of duplicate (×2) determinations
on duplicate field samples.

While the relationship between leaf chlorophyll content
and the output of a SPAD-502 meter will vary from meter to
meter, the determination of leaf chlorophyll from the same
SPAD-502 meter appears to be rather independent of species
(Markwell et al., 1995). This was also confirmed from the
inspection of our data for barley, wheat and maize leaves and
as theoretically justified by Markwell et al. (1995) an expo-
nential equation was found to best describe the relationship
between the calculated chlorophyll concentrations and the
SPAD-502 measurements. The relationship used to convert
SPAD-502 field measurements into leaf chlorophyll content
(μg cm−2) reads

Cab ¼ 6:34299dexpðSPADd0:04379Þ
�6:10629 ðRMSD ¼ 5:4lgcm�2Þ:

ð1Þ

Leaf chlorophyll and LAI validation data were collected in
field plots sown with barley (6), wheat (5) and maize (18)
respectively. Measurements were collected throughout the
growing season at 8 field plots each having a size of
10 m×10 m, and supplementary data were collected in 21
smaller plots (3 m×3 m) during the mid-growing period where
vegetation density is highest. Leaf chlorophyll measurements
were conducted with the SPAD meter at 10 cm increments from
the bottom to the top of the green layer, and a bulk value was
derived by integration of the profile data. In the large field plots,
50–150 SPAD measurements provide the data basis to estimate
leaf chlorophyll, and in the smaller plots, 10–15 SPAD
measurements were used. Each leaf measurement was dupli-
cated to allow detection and removal of bad data. Measurements
were made in conjunction with non-destructive LAI estimates
(LAI-2000, LI-COR, USA) which were based on recordings
every 1.5 m along two full-length transects located perpendic-
ular to each other within each field plot. The field plots are
randomly distributed within an area of 10 km×10 km.

3. Satellite data acquisition and processing

Reflectance data in the green, red and near-infrared
wavelength regions were acquired by SPOT high resolution
visible and geometric imaging instruments (Section 3.3). SPOT
spectral radiances were converted to reflectances using the
atmospheric transfer model MODTRAN 4.0 with input of
atmospheric aerosol concentration from the MODerate resolu-
tion Imaging Spectroradiometer (MODIS) (Section 3.1) and
atmospheric profiles of air temperature, humidity and ozone
from the Atmospheric InfraRed Sounder (AIRS) (Section 3.2)
acquired from the EOS Data Gateway (http://delenn.gsfc.nasa.
gov/~imswww/pub/imswelcome.

MODIS, AIRS and SPOT data were geometrically rectified
and co-registered in UTM coordinates (UTM zone 32, Datum
WGS-84). A digital road network map from the Danish Areal
Information System (AIS, 2000) was used to improve the
geolocation accuracy of the high-resolution SPOT scenes.

3.1. MODIS aerosol data

For atmospheric correction purposes and for calculating the
diffuse fraction of incoming solar radiation (Section 4.2),
aerosol optical thicknesses (τ) at 0.47 and 0.66 μm were
acquired from the Aqua MODIS aerosol product (MYD04). The
aerosol properties are reported at 10 km resolution and are
derived by inversion of MODIS observed reflectances at 500 m
resolution using pre-computed radiative transfer look-up tables
based on dynamical aerosol models (Kaufman et al., 1997).
Product MYD04 is in a stage 2 validation (stage 3 represents the
highest degree of product confidence) and the MODIS
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Fig. 1. Profile comparisons of AIRS and radiosonde atmospheric temperature and humidity at the days of the three SPOT acquisitions (Section 3.3). The radiosondes
were released from Jægersborg, Denmark (55.77 °N, 12.52 °E) at 11:20 UTC, which is very close to the AIRS overpass time.

Table 1
Agreement between AIRS and radiosonde observations of air temperature and
total precipitable water (TPW) expressed in terms of root mean square
deviations (RMSD) and bias

Air temperature RMSD [K] Bias [K]

1013–750 mb 1.07 0.4
750–250 mb 0.78 −0.39
b250 mb 1.06 −0.28

RMSD [mm] Bias [mm]

TPW 1.6 −1.4
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Algorithm Theoretical Basis Document (Kaufman & Tanré,
1998) reports a predicted uncertainty of ±0.05±0.2τ which
appears to be a reasonable uncertainty estimate for green
vegetated surfaces (Houborg et al., accepted for publication;
Vermote et al., 2002).While the aerosol observations were
acquired approximately an hour later than the SPOT reflectance
observations (Section 3.3), comparisons of aerosol optical
thicknesses at the Aqua (∼11:30 UTC) and Terra overpass
times (∼9:45 UTC) at the days of the SPOT acquisitions
indicated a daily temporal variability in τ of less than 0.013 (not
shown). The largest source of error is more likely the algorithm
estimation uncertainty (i.e. ±0.05±0.2τ). The impact of the τ
uncertainty on surface reflectance retrieval was examined by
Vermote and Vermeulen (1999) who reported typical absolute
errors of green reflectance of 0.003 and 0.007, and NIR
reflectance of 0.008 and 0.018 for τ0.55 values of 0.1 and 0.5,
respectively.

3.2. AIRS atmospheric profiles

Atmospheric profiles of retrieved temperature, humidity and
ozone were extracted from the AIRS level 2 Standard Retrieval
Product and used as inputs to the MODTRAN atmospheric
radiative transfer model. AIRS data were preferred over loca-
lized radiosonde observations that are only available at widely
separated sites and therefore may not be representative of the
atmospheric conditions of the area to be mapped. The Standard
Product contains quality assessment flags in addition to the
retrieved quantities that are reported at 28 pressure levels
ranging from 1100 mb to 0.1 mb.

Temperature and humidity retrievals were previously only
validated for non-polar regions (|lat|≤50°) over land and ocean.
Atmospheric temperature and water vapor profiles appear to be
well characterized over the ocean meeting RMS difference
specifications of ∼1 K and 15%, respectively while larger
uncertainties exist over land in the bottom 2 km of the profile
(Fetzer et al., 2005). In order to evaluate the performance of
AIRS temperature and water vapor profiles for Denmark, they
were compared with radiosonde observations provided by the



Table 2
Agricultural land cover classes identified by the unsupervised isodata
classification

Land cover class % of total land area Classification accuracy [%]

1 Wheat 6.3 95.5
2 Barley 11.9 89.6
3 7.4
4 5.9
5 Maize 4.0 97.9
6 5.2
7 3.2
8 3.0
9 Grass 6.7 99.5
10 Maize (late sown) 2.3 97.9
11 1.8
12 Barley (with catch crop) 4.2 89.6
13 3.7

65.6 97.0

The vegetation types have been assigned on the basis of ground-truth reference
data. The assignment of specific crop types to the spectrally separate classes
allows crop-specific leaf inclination angles to be set a priori if known ( Section
4.2); otherwise a spherical distribution is assumed. The class percentages of the
total land area within the SPOT scene are provided along with the classification
accuracy.
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Danish Meteorological Institute for the same geographical
location (55.77° N, 12.52° E) at the days of the SPOT
acquisitions. Temperature retrievals compare very well with the
radiosonde observations throughout the atmospheric column
(Fig. 1) with RMS deviations of around 1 K (Table 1). AIRS
water vapor retrievals are characterized by larger uncertainties
(Fig. 1). Still the general trend in the water vapor profile is well
captured and the RMS deviation is only 1.6 mm for retrieved
total water vapor (Table 1). Larger uncertainties in profile
estimates may be anticipated in regions with strong surface
heating (Fetzer et al., 2005). Atmospheric profile measurements
of ozone were not available for verification of the AIRS esti-
mates. However, AIRS total ozone contents at the days of the
SPOT acquisitions compared favorably with monthly mean
observations reported by Denmark's Meteorological Institute
(Denmark's Meteorological Institute, 2006).

3.3. SPOT reflectance data

Radiances in the green (500–590 nm), red (610–680 nm) and
near-infrared (780–890 nm) wavelength regions were obtained in
20 m resolution on June 22 and 10 m resolution on September 1
and October 5, 2005 by the SPOT 3 high resolution visible
(HRV) and SPOT 5 geometric imaging (HRG) instruments,
respectively for 60 km×60 km image swaths. The mid-infrared
band (1580–1750 nm) available on SPOT 5 was not included in
the present analysis as this band is not present on SPOT 3.
However, the atmospheric correction procedure has been setup to
correct for atmospheric water vapor absorption in the mid-
infrared wavelength region to accommodate future applications
of the model with the mid-infrared band present.

The atmospheric conditions at the Aqua overpass times
(11:30, 11:35 and 11:25 UTC) were assumed to be represen-
tative of the atmospheric conditions at the time of the SPOT
overpasses (10:32, 10:14 and 10:59 UTC) since they were only
approximately an hour apart. Thus MODTRAN was run with
inputs of the appropriate spectral filter response functions, Aqua
MODIS aerosol data, and Aqua AIRS profile retrievals of air
temperature, humidity and ozone. The atmospheric model was
run in multiple-scattering mode to establish a linear function
between the radiance recorded by the sensor and the spectral
(assumed Lambertian) surface reflectance.

Since all of the agricultural crops in the region were either
harvested or in a stage of senescence at the time of the October
overpass, only the June and September acquisitions were used
as input to the biophysical parameter retrieval scheme (Section
4). However all three scenes were used for the classification of
land covers (Section 3.4).

3.4. Land cover classification

A land cover classification was produced to identify
functionally similar vegetation classes required for the gener-
ation of a suite of land cover-specific relationships between the
two biophysical properties of interest and spectral band
reflectances (Section 4). An unsupervised isodata classification
approach was adopted. The combined use of NDVI and near-
infrared reflectance images from all three SPOT scenes was
found to be optimal for the separation of classes. A vector map
from the Danish Areal Information System (AIS, 2000) was
used for the identification of urban areas and road networks.
The isodata classification is based on a number of input
threshold parameters (Tou & Gonzalez, 1974), such as the
minimum and maximum number of classes to define, and for
the studied region a total of 13 spectrally separate agricultural
classes were generated. While some classes may belong to the
same crop type, within crop spectral signature differences could
be an indication of variations in the biophysical properties. The
consideration of class-specific biophysical properties is a key
element in the inversion scheme (Section 4.4). An overall
classification accuracy of 97 % was calculated using confusion
matrices and ground-truth reference data collected from 30
fields representing wheat, barley, maize and grass (Table 2). The
assignment of specific crop types to the spectrally separate
classes is not a prerequisite for implementing the model but
allows crop-specific leaf inclination angles to be set a priori if
known (Section 4.2); otherwise a spherical distribution is
assumed.

4. Biophysical parameter retrieval scheme

A schematic diagram of the satellite-based biophysical
parameter retrieval scheme is given in Fig. 2 Spatial maps of
LAI and Cab were generated using spectral reflectance
relationships established by running a canopy radiative transfer
model (Section 4.1) in forward mode. The relationships were
derived separately for pre-classified land cover classes to
account for the land cover-specific sensitivity to canopy
geometry (leaf angle distribution and clumping) and leaf optical
properties (dry matter content and mesophyll structure), and
were also made dependent on site-specific factors (soil



Fig. 2. A schematic diagram of the satellite-based biophysical parameter retrieval scheme. Inverse and forward canopy reflectance modeling techniques were combined
for the retrieval of LAI and leaf chlorophyll content (Cab) using SPOT green (ρgreen), red (ρred) and near-infrared (ρnir) reflectance observations.
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reflectance). Land cover and site-specific parameters were
derived using inverse canopy reflectance modeling (Sections
4.3 and 4.4). The retrieval scheme requires two clear-sky SPOT
scenes to represent conditions of dense green vegetation and
bare soil respectively for each of the agricultural classes of
interest.

4.1. Canopy radiative transfer model

The turbid medium Markov chain canopy reflectance model,
ACRM (Kuusk 1995, 2001) was chosen for the retrieval of
biophysical parameters using the SPOT surface reflectance
input dataset (Section 3.3). The ACRM incorporates Markov
properties of stand geometry making it applicable to plant
canopies largely made up of vertical elements such as corn
(Kuusk, 1995). In the ACRM the canopy is supposed to consist
of a homogeneous layer of vegetation and a thin layer of
vegetation on the ground surface.

The model operates in the spectral domain 400–2500 nm
and computes directional canopy reflectance at a spectral
resolution of 1 nm. The model inputs are listed in Table 3. The
angular distribution of leaves is described by the modal leaf
inclination (θm) and the eccentricity (eL) in accordance with an
elliptical leaf angle distribution (LAD). However as a
simplification, the mean leaf inclination angle (θl) was used
to parameterize eL and θm in accordance with an ellipsoidal
LAD (Campbell, 1990), which implies considering only
planophile and erectophile modal leaf orientations (θm=0 and
θm=90, respectively). The model accounts for non-lambertian
soil reflectance and the spectral variability of soil reflectance is



Table 3
Input parameters required to run the canopy reflectance model

Parameters Units Symbol Range or fixed value

External parameters
Angstrom turbidity coefficient β 0.11, 0.24
Sun zenith angle (°) SZA 34.1, 49.5
Relative azimuth angle (°) RAZ 96.6, 99.9
View zenith angle (°) VZA 10.7, 30.3

Canopy structure parameters
Leaf area index LAI 0–8
Markov clumping parameter Sz 0.4–1.0
Hot spot parameter SL 0.5/LAI
Mean leaf inclination angle (°) θl 57 a

LAI of the ground level LAIg 0.1

Soil parameters
Weight of the first price function s1 0–0.7
Weight of the second price function s2 −0.1–0.1

Leaf biochemical constituents
Chlorophyll a+b content μg/cm2 Cab 10–100
Leaf equivalent water thickness cm Cw 0.02
Dry matter content g/m−2 Cm 20–100
Brown pigment concentration Cbp 0.0005
Leaf mesophyll structure N 1–3

The dry matter and leaf chlorophyll content are given per unit leaf area. Where
two values are given, the first applies to the June overpass (22.06.2005) while
the latter applies to the September overpass (01.09.2005). For the inverse
estimation of soil parameters ( Section 4.3) the vegetation parameters were set to
the midpoints of the effective ranges for all land cover classes.
a Unless known a priori.
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approximated as a function of four vectors according to Price
(1990). However, only the two first vectors were used in the
inversion as they explain as much as 94.2% of the spectral
variability in the soil reflectance (Price, 1990). Additionally,
the specular reflection of direct sun radiation on leaves and the
hot spot effect are accounted for.

In the ACRM, the spectra of leaf reflectance and transmittance
are computed using the most recent version of the leaf optics
model PROSPECT (Baret & Fourty, 1997; Jacquemoud & Baret,
1990). In PROSPECT the leaf scattering is described by the leaf
mesophyll structure (N) and a tabulated wavelength dependent
refractive index of the leaf surface wax while leaf absorption is
calculated as a function of four biochemical constituents (Table 3).

The inversion of ACRM for the retrieval of two or more
model parameters consists in minimizing the merit function
(Kuusk, 2003) defined as

FðxÞ ¼ R
q⁎j � qj

ej

� �2

þR ðxi � xi;bÞ4w2
i

h i
ð2Þ

where x is the vector of model input parameters (xi,xi+1,….,xn),
ρj⁎ is the observed reflectance, εj is the error of ρj⁎, ρj is the
simulation model reflectance estimate, n is the number of
reflectance samples, wi is a weight, and xi,b is the value of xi on
the boundary of the given region (see Table 3 for range values).
Thus the merit function accounts for uncertainties in the
reflectance data and avoids the non-physical values of input
parameters. The Powell minimization technique is used to solve
the multi-dimensional function (Kuusk, 2003).

4.2. Model inputs and parameterization

Input parameters required for the canopy radiative transfer
model are listed in Table 3. The external parameters constitute
atmospheric and view geometry information (Table 3) and
represents conditions at the acquisition of the spectral surface
reflectances at the two SPOT overpass days. The Ångström
turbidity coefficient (β), which is needed to compute the diffuse
fraction of incoming radiation, was estimated from Ångström's
turbidity formula (Iqbal, 1983) using inputs of aerosol optical
thicknesses at 0.47 (τ0.47) and 0.66 μm (τ0.66) which were
acquired from the MODIS aerosol product (Section 3.1).

The hot spot parameter (SL) was parameterized as a function
of LAI according to Verhoef and Bach (2003). For wheat, barley
and maize canopies, leaf inclination angles measured in the field
using a LI-2000 were assumed to apply (θl =62°, 66° and 50°
respectively). For the remaining land cover classes a spherical
leaf angle distribution was assumed (θl =57°), which is the
model default if a crop type is not assigned to a land cover class.
The setting of the leaf equivalent water thickness (Table 3) is not
important since leaf water has no effect on the reflectance in the
visible and near-infrared wavebands (e.g. Houborg et al., 2007).

In total, 7 free model parameters remain; leaf area index
(LAI), leaf chlorophyll content (Cab), dry matter content (Cm),
Markov clumping parameter (Sz), leaf mesophyll structure (N),
and the two soil parameters (s1 and s2) (Table 3). The retrieval
scheme was further regularized by assuming Cm, Sz and N to be
invariant within each land cover class. Inverse model estimation
of class-specific (Cm, Sz and N) biophysical properties and site-
specific soil parameters (s1 and s2) are outlined in the next two
sections. The methodology employed for the pixel-wise
mapping of LAI and Cab is elucidated in Section 4.5.

4.3. Inverse estimation of soil parameters

The s1 and s2 retrieval scheme (Fig. 3) incorporates a land
cover map (Section 3.4) in addition to a soil map from the
Danish Institute of Agricultural Sciences (1996) that distin-
guishes between 6 different soil types. The steps detailed in
Fig. 3 were done separately for each of the spectrally separate
land cover classes, and the existence of ‘bare soil’ pixels (i.e.
LAIb0.5) is a pre-requisite for reliable retrievals of s1 and s2.
This implies that for each land cover, a satellite scene containing
bare soil or low vegetation density is selected for the inverse
retrieval of permanent site-specific soil parameters.

The scheme assumes that (1) default vegetation parameter
values (Table 3) can be used irrespective of land cover class as
the setting of these parameters will have a minor influence on
the reflectance signal for “bare soil” pixels and (2) the soil color
of individual pixels is similar at the time of the SPOT
acquisitions, which is a valid assumption when the humus
content remains unchanged and the topsoil is equally dry in all
scenes. This latter assumption facilitates the use of the same soil
parameter maps (Fig. 3) for both SPOT scenes.



Fig. 3. A schematic diagram of the scheme developed for a reasonably fast inverse retrieval of the two soil coefficients (s1 and s2) that describe the spectral variability
of the soil reflectance. The illustrated actions were performed independently for each land cover class, which implies that for each land cover, a satellite scene
containing bare soil or low vegetation density is selected for the inverse retrieval of permanent soil parameters.
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Since a pixel-wise retrieval of s1 and s2 using inverse ACRM
modeling would be very time consuming for regional-scale
applications, inverse ACRM modeling was applied on a limited
number of averaged spectral reflectance values.

In the selected low vegetation density scene (for the given
land cover class), a NDVI threshold of 0.55 was applied as a
first step to exclude pixels, with a too high contaminating ve-
getation signal, from the analysis (Fig. 3). The observed range
in the selected ρnir values was then sub-divided in intervals of
width 0.01, which provided a good compromise between com-
putational speed and spatial representation. Subsequently, all
NIR and corresponding green and red reflectance observations
within each sub-range were averaged, and the averaged spectral
reflectance values used as input to the ACRM for the inverse
retrieval of s1, s2 and LAI using default parameter values for all
remaining parameters (Table 3). LAI was included as a free
variable to detect any contaminating vegetation signal, and the
s1 and s2 retrievals were only assigned to the selected pixels if
modeled LAIb0.5 (Fig. 3).

In some cases, the retrieval of soil coefficients was not
possible due to the presence of vegetation (LAIN0.5) in both
scenes. The pixel-wise retrievals of s1 and s2 were averaged for
each soil type and the soil-specific estimates were extrapolated
to the unfilled pixels using the soil map.

Since the second soil parameter, s2, only accounts for
approximately 20% of the spectral variability in the soil
reflectance (Price, 1990), land cover averaged rather than the
pixel specific s2 values were used for the pixel-wise mapping of
LAI and Cab (Section 4.5) in order to improve the computa-
tional efficiency of the approach.
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4.4. Inverse estimation of class-specific parameters

An inversion scheme was designed to provide reasonably
fast estimates of class-specific parameters (Cm, Sz and N) using
multiple spatially averaged green, red and NIR reflectance
observations during conditions of medium to high density
vegetation coverage (NDVIN0.65) (Fig. 4). The scheme
exploits the information content provided by a spatial
reflectance dataset. The steps detailed in Fig. 4 were done
separately for each of the spectrally separate land cover classes,
which implies that for each land cover, a satellite scene
containing dense vegetation cover is selected and used for the
inverse estimation of permanent vegetation parameters.

The assumed invariance of Cm, Sz and N within well-defined
land cover classes makes the simultaneous use of multiple
spatially distributed reflectance observations for the inverse
retrieval of class-specific parameters feasible. The number of
spatially averaged reflectance sets is chosen to represent the
variations within the range of observed spectral reflectance for
each land cover class. In this study, 8 sets of averaged
Fig. 4. A schematic diagram of the scheme developed for reasonably fast inverse ret
clumping parameter (Sz) assumed spatially invariant within each land cover class. The
implies that for each land cover, a satellite scene containing dense vegetation cover is
reflectances (8×3 spectral reflectances in total) were used.
Only pixels completely surrounded by pixels of the same land
cover class were included to avoid the use of mixed pixels.
Additionally, extreme values were avoided due to possible
contamination.

In each land cover-specific inversion, Cm, Sz, N, LAI and
Cab are unknown parameters. However since only a few
parameters should be estimated simultaneously using numerical
optimization techniques (Kuusk, 2003) and the ill-posed nature
of model inversion (Atzberger, 2004; Combal et al., 2002)
makes the setting of the initial parameter values important, only
LAI and Cab were subject to estimation in inversions initialized
with all possible combinations of the Cm, Sz and N parameter
values (Fig. 4). The set of Cm, Sz and N resulting in the best fit,
in terms of the RMS deviation, between observed and calculated
reflectances was assumed to apply to the respective land cover
class.

Since LAI and Cab may vary significantly within each land
cover class, relationships were established to describe the
relative spatial variability in LAI and Cab between the 8 sets of
rievals of the dry matter content (Cm), leaf mesophyll structure (N) and Markov
illustrated actions were performed independently for each land cover class, which
selected and used for the inverse estimation of permanent vegetation parameters.



Table 4
Land cover-specific inverse estimates of Cm, N and Sz derived from reflectances
in the green, red and near-infrared waveband as described in Section 4.4

Land cover class Cm [g m2] N Sz Cab [μg cm−2]

1 80 1.0 0.9 29 (6.5)
2 30 1.3 0.9 34 (6.1)
3 30 1.75 1.0 36 (5.4)
4 45 1.0 1.0 30 (6.3)
5 25 2.7 0.4 57 (12.3)
6 30 1.3 0.9 32 (4.8)
7 55 1.15 1.0 26 (4.9)
8 45 2.6 0.6 43 (7.3)
9 30 1.9 1.0 36 (3.9)
10 20 2.8 0.6 45 (7.2)
11 30 2.8 1.0 43 (5.0)
12 30 2.2 1.0 39 (4.9)
13 45 1.0 1.0 29 (5.2)

Land cover averaged leaf chlorophyll contents are also provided along with the
standard deviation (in the parentheses) of the chlorophyll estimates within each
class.
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reflectances. For this purpose the ACRM was run in forward
mode using all possible combinations of LAI, Cab, Cm, Sz, θl
and N to construct a database of cubic polynomial coefficients
describing the relationship between LAI and ρnir and between
Cab and ρgreen. In the inversion, the LAI variability between the
individual sets of reflectances (i) was then approximated
according to

LAIðiÞ ¼PLAI þ a1½qnirðiÞ � Pqnir � þ a2½qnirðiÞ2 � Pqnir
2�

þ a3½qnirðiÞ3 � Pqnir
3� ð3Þ

where
P
LAI is the inverse LAI estimate representative of the

entire spatial reflectance dataset, a1, a2 and a3 are the
coefficients of the appropriate cubic polynomial relating LAI
to ρnir (from the database of coefficients), and Pqnir is the average
NIR reflectance.

The variability in Cab between the individual reflectance
datasets was approximated in a similar way using green
reflectances according to

CabðiÞ ¼PCab þ b1½qgreenðiÞ �Pqgreen � þ b2½qgreenðiÞ2
�Pqgreen 2� þ b3½qgreenðiÞ3 �Pqgreen 3� ð4Þ

where b1, b2 and b3 are the coefficients of the appropriate cubic
polynomial relating Cab to ρgreen.

4.5. Pixel-wise estimation of LAI and Cab

With the class-specific fixation of Cm, Sz and N
completed, the ACRM was run in forward mode to generate
a family of spectral reflectance relationships, each a function
of the background reflectance signal and canopy character-
istics, required for a fast pixel-wise mapping of LAI and Cab

(Fig. 2).
For each land cover class, the ACRM was run with variable

input of LAI (0, 0.5 …. 8), s1 (0.10, 0.13 … 0.7) and Cab (10,
15 … 100), and ρgreen, ρnir and NDVI were output for each
combination of this input data. The LAI data were then related
separately to ρnir and NDVI using polynomial and exponential
fitting, respectively and regression coefficients were derived
for each value of s1 and Cab (for NDVI) to reflect differences
in the relationships caused by variations in the soil back-
ground reflectance and leaf chlorophyll (for NDVI). Since ρnir
is highly sensitive to the background reflectance signal for
low vegetation densities, LAI–NDVI relationships were em-
ployed for pixels where LAIb2, while LAI–ρnir relationships
were adopted for the remaining pixels as ρnir contrary to
NDVI remains sensitive to LAI in densely vegetated areas
and in addition is unaffected by leaf chlorophyll variations
(Houborg et al., 2007).

Similarly, Cab was related to ρgreen using polynomial fitting
and regression coefficients were derived for each value of s1
and LAI. The fits were near-perfect with errors on the order of
0.1 for the LAI–ρnir and LAI–NDVI relationships and 0.5 μg
cm−2 for the Cab–ρgreen relationships.

A look-up table approach was adopted for mapping LAI and
Cab using the derived spectral reflectance relationships. The
pixel-wise estimates of s1 (Section 4.3) were first grouped into
s1 sub-intervals of width 0.015. The LAI–ρnir relationship
appropriate to the specific s1-interval was then applied to all the
pixels within the given s1 class. Subsequently, the LAI estimates
were grouped into a number of classes each representing a LAI
sub-interval with a range of 0.5. This allows LAI to be estimated
using a separate LAI–NDVI relationship for each combination
of the s1 and LAI classes. Finally, the Cab estimates were
grouped into a number of classes each representing a Cab sub-
interval with a range of 5 μg cm−2. This allows LAI to be
estimated using a separate LAI–NDVI relationships for each
combination of the s1 and Cab classes (Fig. 2).

5. Results

5.1. The effect of land cover

LAI–ρnir, LAI–NDVI and Cab–ρgreen relationships were
established independently for 13 spectrally classified agricul-
tural land cover classes (Table 2) to reflect any between class
variability in canopy architecture and leaf biochemical
constituents.

The inverse estimates of the dry matter content (Cm), leaf
mesophyll structure (N) and Markov clumping parameter (Sz)
for the agricultural land cover classes are listed in Table 4. The
dry matter content results for the 13 land cover classes lie in the
interval 20–80 g m−2 (Table 4) with a mean value of 38 g m−2

which is slightly lower than the average (42 g m−2, range: 22–
101 g m−2) obtained from 12 leaf samples representative of
agricultural crops (predominantly maize) collected during the
Leaf Optical Properties Experiment (LOPEX'93) (Hosgood
et al., 1995). While the leaf mesophyll structure parameter
varies within a range of 1–2 for most of the classes which



Fig. 5. The effect of contrasting canopy characteristics on LAI–NDVI (a), LAI–ρnir (b), and Cab–ρgreen (c) relationships. Sample relationships for wheat, barley and
maize are depicted.
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suggests a fairly compact mesophyll structure, higher values of
N were retrieved for the maize classes. The incorporation of
Markov properties of stand geometry in ACRMwas found to be
important for matching modeled and measured reflectance
spectra for the maize classes. In this case, the retrieved values of
Sz (0.4 and 0.6 for class 5 and 10, respectively) are consistent
with results obtained by Kuusk (1995) and indicate a vertical
arrangement of the plant elements. Sz approaches 1.0 for most
of the remaining classes indicating homogeneous canopies of
randomly positioned leaves.

The effect of contrasting canopy characteristics on LAI–ρnir,
LAI–NDVI and Cab–ρgreen relationships are demonstrated for
wheat, barley and maize in Fig. 5. The Markov properties and
leaf structure characteristics of maize cause markedly different
responses of LAI to changes in NDVI and ρnir (Fig. 5a and b)
and of Cab to changes in ρgreen (Fig. 5c) compared to those of
barley and wheat. For example, application of the Cab–ρgreen
relationship for maize causes an increase in leaf chlorophyll of
100% relative to the application of the Cab–ρgreen relationship
for barley (Fig. 5c). While variations in Cm appear to have a
fairly minor influence on Cab–ρgreen relationships, the higher
Cm value retrieved for wheat (Table 4) has a large effect on the
Fig. 6. Effects of site-specific factors, i.e. s1 and Cab, on LAI–ρnir (a) and LAI–N
derived LAI–ρnir and LAI–NDVI relationships. The sensitivity
to Cm is especially pronounced for the LAI–ρnir relationship
(Fig. 5b) but the decreasing sensitivity of ρnir to changing leaf
biomass as Cm increases also causes a faster saturation of the
NDVI signal with increasing LAI (Fig. 5a).

5.2. The effect of site-specific factors

Variations in the class-specific canopy characteristics
necessitated the use of a family of land cover dependent
LAI–ρnir, LAI–NDVI and Cab–ρgreen relationships (Section
5.1) Still, a single relationship for each land cover class may not
be sufficient to efficiently describe the spatial variability of the
biophysical parameter of interest. Spatial variations in site- (or
pixel) specific parameters such as the soil background
reflectance signal (s1), leaf chlorophyll concentration and LAI
may require the use of multiple relationships within the same
land cover class for an accurate mapping of LAI and Cab.

Fig. 6a illustrates the strong sensitivity of LAI–ρnir relation-
ships derived for barley to variations in soil reflectance (s1).
Even at high vegetation densities, the soil reflectance signal will
impact the LAI predictions as a result of high canopy
DVI (b and c) relationships. The depicted relationships apply to barley fields.



Fig. 7. Effects of variations in the soil background signal (a and b) and LAI (c) on Cab–ρgreen relationships. The depicted relationships are representative of barley
fields.
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penetration capabilities of ρnir (Fig. 6a). This signifies the
importance of employing different LAI–ρnir relationships for
pixels having different soil background reflectance signals.
While soil background influences can also be detected in the
generated LAI–NDVI relationships, the vegetation index nor-
malization reduces the dependency on s1 significantly (Fig. 6b).
However, the NDVI signal saturates at intermediate vegetation
densities and is also highly sensitive to changing chlorophyll
concentrations (Fig. 6c). As a result, LAI–NDVI relationships
were only applied to pixels with a low vegetation density
(LAIb2) while LAI–ρnir relationships were adopted for the
remaining pixels to exploit the LAI predictive power of ρnir in
densely vegetated areas.

While soil reflectance effects contribute to the green
reflectance signal at low vegetation densities (Fig. 7a), the
inability of radiometers operating in the green spectrum to sense
through a leaf layer (Lillesaeter, 1982) causes a negligible
influence of soil reflectance variations already at intermediate
vegetation densities (Fig. 7b). Moreover Cab–ρgreen relation-
ships are only affected by LAI variations at low to intermediate
Fig. 8. Verification of estimated LAI against field measured LAI at barley, maize
and wheat sites. The dotted line is the 1:1 line.
vegetation densities (Fig. 7c). Thus, the reliability of the Cab

estimates increases with increasing vegetation density as Cab

becomes the only factor controlling ρgreen at high vegetation
density for a given land cover class (Fig. 7c). As a result, a
single land cover-specific Cab versus ρgreen curve may be used
for pixels characterized by a high vegetation density.

5.3. Verification of LAI and leaf chlorophyll estimates

The verification of LAI and Cab estimates against ground
measurements was done using the average value of a 2×2
pixel block around the corresponding field plots to account for
geolocation error and any mismatch between the point of
measurement and the pixel dimensions. The application of the
land cover and site-specific LAI–NDVI and LAI–ρnir
relationships resulted in overall good agreements between
estimated and measured LAI for barley, wheat and maize sites
(Fig. 8) with an overall RMS deviation of 0.74 (n=19). Much
of the discrepancy is explained by the tendency to
underestimate LAI for maize which is characterized by a
mean absolute bias of 0.71. The use of LAI–ρnir relationships
for LAIN2 were found to improve the agreement between in-
situ measurements and satellite estimates as the sole use of
LAI–NDVI relationships resulted in a RMS deviation of 1.22
(not shown).

Fig. 9a illustrates the spatial distribution of leaf chlorophyll
for agricultural land cover classes (Fig. 9b) within a 8×7 km
segment of the SPOT image. The map was produced using a
family of Cab–ρgreen relationships, each being a function of
class-specific characteristics (Cm, N, Sz), soil background
reflectance signal (s1) and LAI. The Cab map was prepared as
a composite of results from the two SPOT acquisitions (June 22
and September 1) to illustrate spatial variation in Cab of dense
vegetation. A large spatial heterogeneity is characteristic of Cab

which are seen to vary from 20 to 80 μg cm−2 (Fig. 9a). For land
cover classes such as wheat and barley (which are densely
vegetated in June), the average Cab lies in the interval 29–39 μg
cm−2 (Table 4). For maize (which are densely vegetated in
September), Cab values are considerably higher, i.e. for class 5
and 10, average values of 57 and 45 μg cm−2 are obtained. A



Fig. 9. Spatial distribution of leaf chlorophyll (a) across agricultural land cover classes (b) within a 8×7 km segment of the SPOT image swath. The Cab map (a)
represents a composite of results from two SPOT acquisitions (June 22 and September 1) to illustrate leaf chlorophyll contents of dense canopies being in their mid-
growing phase (see text).

Fig. 10. Verification of remote sensing based leaf chlorophyll (Cab) estimates
using field measurements collected at maize, barley and wheat sites within a few
days of the two SPOT acquisitions and up to 3 weeks before and after the
satellite overpasses (June 22 and September 1). The overall root mean square
deviation (rmsd) between estimates and field measurements is listed. The bars
represent the standard deviation of the Cab measurements and the dotted line is
the 1:1 line.
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large within class variability in Cab is evident in both Fig. 9a
and Table 4.

The reliability of the Cab estimates was verified for maize,
wheat and barley sites. The verification plot (Fig. 10) illustrates
a high prediction ability of the Cab–ρgreen relationships over a
wide range of variation in Cab and a RMS deviation of 5.3 μg
cm−2 was retrieved when comparing estimates with field
measurements collected within a few days of the two SPOT
acquisitions (Fig. 10).

While a significant spatial variability was observed for
Cab (Fig. 9), measurements of Cab conducted at barley,
wheat and maize sites over a wide range of variation in
canopy development suggest a fairly constant value of Cab

in time for canopies of green leaves in their mid-growing
phase (Fig. 11). Thus for any given locality, a single estimate
of Cab obtained at some point in the vegetative growth or
leaf constant phase could be sufficient and assumed to
represent the entire period.

Comparing estimates from the composited Cab map (Fig. 9)
with field measurements collected up to 3 weeks before and
after the satellite overpass at different wheat, barley and maize
sites resulted in a RMS deviation of only 4.9 μg cm−2 (Fig. 10).
These validation results provide additional confidence in the
approach and demonstrate the feasibility of using Cab estimates



Fig. 11. Temporal progression of measured leaf chlorophyll (Cab) over a wide
range of variation in canopy development (LAI). The two SPOTacquisitions are
indicated by arrows. The bars represent the standard deviation of the Cab

measurements.
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derived during peak vegetative conditions as generally
representative for the mid-growing vegetative phase.

6. Discussion and conclusions

The use of multiple land cover and site-specific spectral band
and index relationships derived largely without the use of in-situ
calibration measurements effectuated reliable quantitative
estimates of leaf chlorophyll content and LAI for agricultural
crops characterized by contrasting architectures and leaf
biochemical constituents. The family of LAI–ρnir, LAI–NDVI
and Cab–ρgreen relationships established using inverse and
forward CR modeling techniques illustrated the fundamental
and well-recognized non-uniqueness of spectral reflectance
relationships (e.g. Baret & Guyot, 1991; Broge & Leblanc,
2001; Colombo et al., 2003; Haboudane et al., 2004; Houborg
et al., 2007; Zarco-Tejada et al., 2003), and the necessity of
using a suite of these simplified relationships for regional-scale
mapping applications to take into account soil background
effects and variations in canopy characteristics.

Despite of the high vulnerability of ρnir to variations in
background properties even at high vegetation densities, LAI–
ρnir relationships were found useful and preferable over LAI–
NDVI relationships for LAI prediction. The superiority of the
LAI–ρnir was due to an effective correction for background
influences based on inverse CR modeling techniques and an
enhanced sensitivity of ρnir to LAI for dense vegetative covers.
Soil background influences were shown to have a much reduced
effect on Cab–ρgreen relationships due to low canopy penetration
capabilities of green spectral radiance. Consequently a single
land cover-specific Cab versus ρgreen curve could be used as a
reasonable approximation for pixels characterized by a high
vegetation density (LAIN3). The success of the proposed
background reflectance retrieval scheme relies on (1) the
availability of SPOT reflectance observations from fully
exposed or sparsely vegetated soil surfaces for each of the
land cover classes of interest and (2) the assumption that the soil
color of individual pixels is similar at the time of the SPOT
acquisitions (Section 4.3). The latter point is only true when the
humus content remains unchanged and the topsoil is equally dry
in all scenes. As the transition phase from moist to dry topsoil is
of relatively short duration (e.g. Sellers et al., 1997), most clear-
sky satellite acquisitions are believed to be applicable unless
immediately succeeding a precipitation event.

SPOT reflectance observations of peak vegetative covers
were required for the inverse retrieval of spatially and
temporally invariant canopy parameters for each land cover
class (Section 4.4). While the retrieval scheme solves
automatically for the dry matter content (Cm), leaf mesophyll
structure (N) and Markov clumping characteristics (Sz), leaf
inclination angles (θl) are either parameterized from a priori
information or fixed assuming a spherical leaf angle distribution
(LAD). Remote sensing based CR modeling studies typically
assume a spherical leaf orientation (Fang & Liang, 2005; Fang
et al., 2003; Haboudane et al., 2004) as a spherical LAD is a
reasonable approximation for a wide range of crops (Campbell
& Norman, 1998). However θl is an influential factor in visible
and near-infrared reflectance spectra (Bacour et al., 2002) and
increasing θl from a planophile to an erectophile canopy causes
an increase in the sensitivity of reflectance spectra to θl
especially when viewed from an oblique angle (Houborg et al.,
2007). The use of directional data, acquired from multi-angle
sensors like the Multi-angle Imaging SpectroRadiometer
(MISR) or from multi-temporal acquisitions from sensors with
a wide range in viewing angles, in addition to extra wavebands
located in the mid-infrared spectrum could probably aid the
inferences of canopy structure parameters such as θl (Eklundh
et al., 2001; Houborg et al., 2007). This would reduce modeling
errors caused by departures from a spherical LAD.

The inverse estimation of Cm, N and Sz was made feasible
by assuming invariance of these parameters within well-defined
spectrally separate land cover classes, and by allowing the
information content provided by a land cover-specific spatial
reflectance dataset to be exploited. The estimates of Sz were in
accordance with observations demonstrating the distinct
Markov properties of maize canopies (Kuusk, 1995; Ross,
1981) and the more random position of leaves in canopies of
wheat and barley (Campbell & Norman, 1998). The inverse
retrieval of Cm and N is complicated by the very similar
response of ρgreen, ρred and ρnir to variations in Cm and N,
which makes it difficult to separate the contributions of Cm and
N to the reflectance signal (Jacquemoud et al., 2000). For the
maize classes, the retrieved N values (2.7–2.8) disagree with
the compact mesophyll structure of monocotyledon leaves (e.g.
maize) (Jacquemoud & Baret, 1990) and the Cm values lie at the
low extreme of range values observed for maize in the
LOPEX’93 dataset (Hosgood et al., 1995). The reflectance
response to the combination of a high N and low Cm value is a
significant increase of ρnir and a slight increase of ρgreen and
ρred (Houborg et al., 2007). Possibly, the ‘unrealistic’ N and Cm



200 R. Houborg, E. Boegh / Remote Sensing of Environment 112 (2008) 186–202
values for maize are the result of the CR model trying to match
reflectance spectra influenced by factors currently not properly
described by the CR model. Maize flowering or the existence of
yellow leaves in the canopy could be possible explanations as
both factors will cause an increase of reflectance in the visible
and near-infrared wavelengths. This may explain the LAI
underestimation for maize (Fig. 8) as an increase of LAI causes
a decrease of visible waveband reflectances (Houborg et al.,
2007) thereby increasing the deviation between observed and
modeled reflectances.

While leaf chlorophyll concentrations are known to decrease
markedly for semi-green and yellow leaves (Boegh et al., 2002),
our data suggested a fairly conservative temporal evolution of
Cab for canopies of green leaves during the mid-growing
vegetation phases. Accordingly single pixel-wise estimates of
Cab derived during conditions of high density green vegetation,
when the sensitivity of ρgreen to changing leaf chlorophyll
concentrations is maximized, might be assumed representative
of the vegetative growth and leaf constant phases for the studied
crop types. This assumption is viable because of non-stressed
environmental conditions whereas water stress and nitrogen
deficiency may cause a decrease of leaf chlorophyll concentra-
tions (Carter, 1994). The temporal variability in Cab and LAI
may be modeled by applying the family of generated spectral
relationships to SPOT reflectance observations acquired at
intermediate vegetation stages between the ‘bare soil’ and dense
vegetation acquisition. This is feasible as the land cover-specific
vegetation and site-specific soil parameters are assumed
temporally invariant.

The correlation of leaf chlorophyll with leaf nitrogen is well
known (e.g. Blackburn, 1998; Boegh et al., 2002; Yoder &
Pettigrew-Crosby, 1995) and estimates of leaf nitrogen have
been converted to estimates of the maximum catalytic capacity
of Rubisco (Vm) (Boegh et al., 2002; De Pury & Farquhar, 1997;
Haxeltine & Prentice, 1996; Nijs et al., 1995), which is a key
variable in the widely used leaf photosynthesis model of
Farquhar et al. (1980). Vm describes the biochemical capacity of
leaves to assimilate CO2 and a successful implementation of the
Farquhar leaf photosynthesis model in Soil Vegetation Atmo-
spheric Transfer (SVAT) schemes requires Vm to be accurately
assessed (Houborg & Soegaard, 2004). The significant spatial
variability in leaf chlorophyll observed for the study region
stresses the need for a spatial parameterization of the correlated
variable, Vm, for the establishment of regional carbon budgets,
and accurate predictions of leaf chlorophyll from remotely
sensed data could be a step towards obtaining this important
goal.

In principle, the presented biophysical parameter scheme can
be directly implemented and run for any agricultural region on
the earth due to the independency on in-situ measurements. The
methodology requires at least two clear-sky SPOT scenes to
represent conditions of dense green vegetation and bare soil
respectively for each of the agricultural crops of interest. The
robustness of the scheme also relies on readily available and
accurate atmospheric profile data for the conversion of SPOT
radiances into surface reflectances, and the study demonstrated
a promising potential of data from Aqua AIRS.
To summarize, the scheme was made completely automated
and image-based by using aerosol concentrations and atmos-
pheric profile data from Aqua MODIS and AIRS which are
available globally every 1–2 day for atmospheric correction
purposes, (2) an unsupervised isodata classification approach
for the separation of spectrally homogeneous land cover clas-
ses, (3) a soil map, and (4) by solving for the soil background
reflectance signal, leaf mesophyll structure, dry matter content,
Markov clumping parameter, leaf chlorophyll content and
leaf area index using innovative inverse and forward CR mo-
deling techniques without the use of a priori ground based
information.

While the flexibility of the approach and independency of in-
situ data allow for easy model implementation anywhere, more
validation studies are needed to evaluate the usefulness and
limitations of the approach for other environments and species
compositions.
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